Alternative mechanisms by which mediator subunit MED1/TRAP220 regulates peroxisome proliferator-activated receptor gamma-stimulated adipogenesis and target gene expression.
نویسندگان
چکیده
Mediator is a general coactivator complex connecting transcription activators and RNA polymerase II. Recent work has shown that the nuclear receptor-interacting MED1/TRAP220 subunit of Mediator is required for peroxisome proliferator-activated receptor gamma (PPARgamma)-stimulated adipogenesis of mouse embryonic fibroblasts (MEFs). However, the molecular mechanisms remain undefined. Here, we show an intracellular PPARgamma-Mediator interaction that requires the two LXXLL nuclear receptor recognition motifs on MED1/TRAP220 and, furthermore, we show that the intact LXXLL motifs are essential for optimal PPARgamma function in a reconstituted cell-free transcription system. Surprisingly, a conserved N-terminal region of MED1/TRAP220 that lacks the LXXLL motifs but gets incorporated into Mediator fully supports PPARgamma-stimulated adipogenesis. Moreover, in undifferentiated MEFs, MED1/TRAP220 is dispensable both for PPARgamma-mediated target gene activation and for recruitment of Mediator to a PPAR response element on the aP2 target gene promoter. However, PPARgamma shows significantly reduced transcriptional activity in cells deficient for a subunit (MED24/TRAP100) important for the integrity of the Mediator complex, indicating a general Mediator requirement for PPARgamma function. These results indicate that there is a conditional requirement for MED1/TRAP220 and that a direct interaction between PPARgamma and Mediator through MED1/TRAP220 is not essential either for PPARgamma-stimulated adipogenesis or for PPARgamma target gene expression in cultured fibroblasts. As Mediator is apparently essential for PPARgamma transcriptional activity, our data indicate the presence of alternative mechanisms for Mediator recruitment, possibly through intermediate cofactors or other cofactors that are functionally redundant with MED1/TRAP220.
منابع مشابه
Discrete roles for peroxisome proliferator-activated receptor gamma and retinoid X receptor in recruiting nuclear receptor coactivators.
Peroxisome proliferator-activated receptor gamma (PPARgamma) plays a major role in adipogenesis. PPARgamma binds to DNA as a heterodimer with retinoid X receptor (RXR), and PPARgamma-RXR can be activated by ligands specific for either receptor; the presence of both ligands can result in a cooperative effect on the transactivation of target genes. How these ligands mediate transactivation, howev...
متن کاملThe Mediator subunit MED1/TRAP220 is required for optimal glucocorticoid receptor-mediated transcription activation
The MED1/TRAP220 subunit of the Mediator plays a key role in facilitating ligand-dependent interactions of this multisubunit coactivator complex with nuclear receptors through their ligand binding domains. The isolated MED1/TRAP220 protein previously was shown to interact with glucocorticoid receptor (GR) in a ligand-dependent manner. However, the functional role of MED1/TRAP220, within the con...
متن کاملPeroxisome-proliferator-activated receptor-binding protein (PBP) is essential for the growth of active Notch4-immortalized mammary epithelial cells by activating SOX10 expression.
PBP (peroxisome-proliferator-activated receptor-binding protein) [Med1 (mediator 1)/TRAP220 (thyroid-hormone-receptor-associated protein 220)] is essential for mammary gland development. We established a mammary epithelial cell line with a genotype of PBPLoxP/LoxP by expressing an active form of Notch4. Null mutation of PBP caused severe growth inhibition of the Notch4-immortalized mammary cell...
متن کاملCoactivators in PPAR-Regulated Gene Expression
Peroxisome proliferator-activated receptor (PPAR)alpha, beta (also known as delta), and gamma function as sensors for fatty acids and fatty acid derivatives and control important metabolic pathways involved in the maintenance of energy balance. PPARs also regulate other diverse biological processes such as development, differentiation, inflammation, and neoplasia. In the nucleus, PPARs exist as...
متن کاملاثرایمونوتراپیوتیک آل- ترانس رتینوئیک اسید بر دیابت تیپ 1 در موش و تاثیر آن بر بیان ژن (peroxisome proliferator- activated receptor gamma (PPARγ
Background: All-trans retinoic acid (ATRA) has a variety of biological activities, including immunomodulatory action in a number of inflammatory and autoimmune diseases. The purpose of this study was to investigate the effects of all-trans retinoic acid on the treatment of autoimmune diabetes in mice and its effects on expressions of Peroxisome Proliferator-Activated Receptor gamma (PPARγ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Molecular and cellular biology
دوره 28 3 شماره
صفحات -
تاریخ انتشار 2008